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Abstract Many known algorithms allow us to topologically recognize surfaces in 3D images.
However, none of them permits us to distinguish different types of embeddings of surfaces. In
this paper, we restrict our study to the case of embedded tori, and focus on their recognition
up to isotopy. We recall the mathematical definition of isotopy, then we define the two key
elements which will enable us to classify an embedded torus in R3 up to isotopy : its state
and the knot associated with it. At the end of the paper, we bring up two algorithms
which aim at finding the isotopy type of an embedded torus, by determining its state and
computing its associated knot.
Keywords torus, embedding, isotopy, solid torus, knots, 3D images.

1 Introduction
In medical imaging for instance, it would be helpful to have algorithms able to fully recognize
surfaces in 3D images. Numerous programs computing topological properties such as the Euler
characteristic, the genus, and the homology of a surface already exist (see for instance [Mun84],
[DG98] and [DE95]). They enable computers to recognize surfaces in images up to homeomor-
phism. It means that these programs can tell us if a given surface in the image is a sphere, a
torus, a projective plane... However, a single surface can be embedded in very different ways in an
image. For instance, both surfaces of Figure 1 are orientable surfaces of genus 2. Topologically,
they are the same surface, and yet by virtue of their position in R3 they are different, the second
one is not just a deformation of the first one.

Figure 1: The same surface embedded in two different ways in R3.

That is why algorithms allowing us to recognize embedded surfaces “up to deformation” would
be of interest. We will restrict our study to the case of embedded tori. Our purpose is thus to
recognize tori in 3D images “up to deformation”.

The paper is organized as follows. In section 2 basic notions necessary to the understanding of
the rest of the article are recalled. Section 3 deals with recognition of embedded tori: it contains
a definition and a description of the different states of tori embedded in R3, and it introduces the
notion of knot associated with a torus. Finally, section 4 mentions briefly two algorithms that
have been implemented in order to recognize embedded tori.
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2 Preliminaries

2.1 Conventions and notations
In this paper, maps and spaces will be assumed to be piecewise-linear (denoted by P.L.). It means
that each space is a simplicial complex, and that each map, after some subdivision of its domain
and range, sends simplexes linearly onto simplexes (see [Hud69], and [RS72]). This assumption is
natural, since we deal with images, and necessary to use several theorems as Dehn’s lemma, the
loop theorem, and hence the solid torus theorem (see [Rol76]).

If Σ is a topological manifold with boundary, we will denote by Bd(Σ) its boundary, and by
Int(Σ) its interior.

Given n ∈ N (the set of non-negative integers), we will use the classical notation of the n-
dimensional unit sphere : Sn = {x ∈ Rn+1, ‖x‖ = 1}. Moreover, the n-dimensional unit disc will
be denoted by Dn = {x ∈ Rn, ‖x‖ ≤ 1}.

Let X a be topological space, E ⊂ X and n ∈ N. Then we say that E is a n-sphere if E is
homeomorphic to Sn, that E is a n-disc if E is homeomorphic to Dn, and that E is a disc if E is
a 2-disc.

2.2 Alexandroff one-point compactification
This compactification will be useful to apply results valid for S3 to R3.

Alexandroff compactification extends a noncompact topological space to a compact one, by
adding a single point. More precisely, let X be a locally compact topological space. The Alexan-
droff extension of X is the space X̃ = X ∪ {x} where x /∈ X , endowed with the topology whose
open sets are the open sets of X together with the sets of the form {x} ∪ (X \K) where K is a
compact subset of X . Then X̃ is compact (see [Kel75]). The point x is usually called point at
infinity and is denoted by ∞.

Its is well known that for n ∈ N∗, the Alexandroff extension of Rn is an n-sphere. For instance,
if n = 2, S2 can be seen as R2 glued with a point at infinity (see Figure 2). The case which will
be useful in this paper is n = 3.

Figure 2: The Alexandroff extension of R2.

2.3 Isotopy
Our goal is to recognize embedded tori “up to deformation”. Thus we need to define mathematically
what we mean by deformation. This deformation is conveyed by the notion of isotopy (see [Cro04]).

We firstly define isotopy of maps :

Definition 1. Let X,Y be topological spaces. Two homeomorphisms ϕ0,ϕ1 : X → Y are said to
be isotopic if there exists a continuous map Φ : X × [0, 1] → Y such that :

1. Φ(x, 0) = ϕ0(x) ∀x ∈ X

2. Φ(x, 1) = ϕ1(x) ∀x ∈ X

3. For all t ∈ [0, 1], the partial map ϕt : X → Y defined by ϕt(x) = Φ(x, t) is a homeomorphism.
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Thus the notion of isotopy is similar to homotopy, but stronger since isotopy requires the
partial functions to be homeomorphisms.

Example 1. Let X = Y = [−1, 1] and let f be given by f(x) =

{
3x+ 2 if x ∈

[
−1,− 1

2

]

1
2x+ 2

3 if x ∈
[
− 1

2 , 1
]
.

Then f is isotopic to identity (id[−1,1]) through the map (see Figure 3) :

Φ : [−1, 1]× [0, 1] → [−1, 1]

(x, t) +→






(
t+2
2−t

)
x+

(
2t
2−t

)
if x ∈

[
−1,− 1

2 t
]

(
2−t
t+2

)
x+

(
2t
t+2

)
if x ∈

[
− 1

2 t, 1
]
.

1

!1

1

!1

graph(ϕt)

graph(f)

graph(id)

Figure 3: f is isotopic to id[−1,1].

We can now state a geometrical definition of isotopy (often called ambient isotopy):

Definition 2. Let X be a topological space. Two subsets X1, X2 ⊂ X are (ambient) isotopic in
X if there exists a homeomorphism h : X → X isotopic to the identity map idX of X, and such
that h(X1) = X2.

Geometrically, this means that X1 and X2 are isotopic if and only if X1 can be continuously
deformed inside X to obtain X2, without cutting.

For instance, in Figure 4, surfaces (a) and (b) are isotopic in R3 (the second one can be
continuously deformed to obtain the first one), while (a) and (c) are not isotopic in R3 (to obtain
(a) from (c), we need to cut it).

(a) (b) (c)

Figure 4: Surfaces (a) and (b) are isotopic in R3, whereas (a) and (c) are not.

2.4 Embedded tori
Since this article deals with embedded tori, we now quickly recall what is an embedded torus. By
torus, noted T 2, we mean any space homeomorphic with the product S1×S1. The picture to keep
in mind is the surface of a doughnut.
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Let Σ be a topological manifold (with or without boundary). An embedding of Σ in a topological
space E is a map p : Σ → E which is a homeomorphism onto its image. Thus, an embedded torus
is a topological space which can be written as p(S1×S1) for some embedding p. Consequently two
embedded tori in R3 are always homeomorphic, but not necessarily isotopic in R3. For instance,
the two embedded tori of Figure 5 are not isotopic. The difference between them comes from their
embedding in R3, hence from the ambiant space.

Figure 5: Two non isotopic embedded tori in R3.

Therefore, to distinguish two embedded tori, we study their complement in R3.

3 Recognition of tori embedded in R3

3.1 Embedded tori in R3 and solid tori
By solid torus, denoted by T 2

p , we mean any space homeomorphic with the product S1×D2. This
time, the picture to keep in mind is the whole doughnut.

If Tp is a solid torus embedded in R3, then its boundary is an embedded torus in R3. Then,
the question that comes to mind is whether each torus embedded in R3 is the boundary of an
embedded solid torus in R3. The following fundamental results will help us to answer this ques-
tion. These results are stated for tori embedded in S3, and we will apply them to R3 through
Alexandroff compactification.

Given a torus T embedded in S3, the Jordan-Brouwer theorem ensures that S3 \ T consists
of two open connected components, where the boundary of each component is T . The following
result, adapted from [Rol76], provides a sufficient condition for the closure of one of these two
components to be a solid torus.

Proposition 1. Let T be a torus embedded in S3, C one of the two connected components of
S3 \ T , and A = C ∪ T = C. Assume that there exists a disc D ⊂ A such that

• Int(D) ⊂ C,

• Bd(D) ⊂ T ,

• Bd(D) is non-trivial in π1(T ) (the fundamental group of T ).

Then A is a solid torus.

Figure 6: The existence of the disc D ensures that A is a solid torus
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Figure 6 provides an illustration of this result.
One of the consequences of this proposition is the following fundamental result. Reader shall

refer to [Rol76] for a proof.

Theorem 1. (Solid torus theorem) Let T be a torus embedded in S3 and C1, C2 the two
connected components of S3 \ T . Then C1 or C2 is a solid torus.

In other words, any torus embedded in S3 bounds a solid torus on at least one side.
This gives rise to our definition of the three states of embedded tori in R3.

3.2 The three states of tori embedded in R3

Keeping in mind that our main concern is to recognize tori in 3-dimensional images, we now focus
on the case of R3. Contrary to knot theory, which is unchanged in S3 and in R3, the theory of
torus embeddings is more complicated in R3. As S3 is the Alexandroff extension of R3, we can
use what has already been done in this case.

Definition 3. Let T be a torus embedded in R3. Let us consider the Alexandroff extension
S3 = R3 ∪ {p∞} of R3. Let C1, C2 the connected components of S3 \ T . Assume that p∞ ∈ C1.
Three cases may happen :

1. both C1 and C2 are solid tori, T is then said canonical, or standard,

2. only C2 is a solid torus. : we say that T is a knotted torus,

3. only C1 is a solid torus : T is then called a knotted anti-torus.

Figure 7 shows these three states of embedded tori. In each case, the component C1 is white,
while C2 is shaded.

Figure 7: The three states of tori embedded in R3

We could state a similar definition of the different states of tori embedded in S3, but there
would be only two possibilities, due to the fact that if T is a torus embedded in S3 then both
connected components of S3 \T are bounded. Let C1, C2 be the connected components of S3 \T .
Then two cases may occur : either both C1 and C2 are solid tori (we say that T is canonical in
S3), or only one of them is a solid torus (T is then said standard in S3).

Since we want to recognize tori up to isotopy, this definition of the three states of embedded
tori in R3 needs to fit with isotopy, and fortunately it is the case :

Proposition 2. Two isotopic embedded tori in R3 have the same state (both are canonical, both
are knotted, or both are knotted anti-tori).

Proof : Let T1 and T2 be two isotopic embedded tori in R3, C1, C2 the two connected components
of R3 \ T1 and C′

1, C
′
2 those of R3 \ T2. Assume that C1 and C′

1 are the bounded ones. Since T1

and T2 are isotopic, there exists a homeomorphism h : R3 → R3 isotopic to identity and such that
h(T1) = T2.

As C1 is connected and h is a homeomorphism, h(C1) is connected. Moreover, h(C1) ⊂
(R3 \ T2), since h is a bijection such that h(T1) = T2. Therefore, h(C1) is included in one of the
connected components of R3 \ T2 : h(C1) ⊂ C′

1 or h(C1) ⊂ C′
2.
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• Assume that h(C1) ⊂ C′
1. By the same argument, we have h−1(C′

1) ⊂ C1 or h−1(C′
1) ⊂ C2.

If we had h−1(C′
1) ⊂ C2, as h(C1) ⊂ C′

1, it would imply that C1 = h−1(h(C1)) ⊂ C2, which
is absurd. Consequently h−1(C′

1) ⊂ C1, and so h(C1) = C′
1.

• If h(C1) ⊂ C′
2, the same proof shows that h(C1) = C′

2.
Thus we have h(C1) = C′

1 or h(C1) = C′
2. And yet C1 is bounded, hence compact. Thus h(C1)

is compact too, therefore h(C1) ⊂ h(C1) is bounded. Consequently h(C1) = C′
1, and in the same

way h(C2) = C′
2. Since h is a homeomorphism, this proves that for i ∈ {1, 2}, Ci is a solid torus

if and only if C′
i is, hence the announced result. !

However, it is obvious that two tori of the same state are not always isotopic. Figure 8 gives
an example of two knotted tori that are not isotopic. Therefore knowing the state (canonical,
knotted torus or knotted anti-torus) is not sufficient to tell two embedded tori apart, and we will
have to add extra information.

Figure 8: Two knotted tori that are not
isotopic.

S1

γ

Figure 9: A knot is an embedding of the
unit sphere S1.

3.3 Knot associated with an embedded torus in R3

In order to distinguish two embedded tori of same state, we are going to associate a knot with
each embedded torus. First of all, let us recall what is a knot:
Definition 4. A knot in R3 (respectively S3) is a map γ : S1 → R3 (respectively γ : S1 → S3)
which is a homeomorphism onto its image.

In other words, a knot is an embedding of the unit sphere S1 (see Figure 9). We will sometimes
refer the image of the map γ as a knot.

A knot can be naturally associated with a solid torus, thanks to the following result :
Proposition 3. Let Tp be a solid torus embedded in S3. Then Tp admits a deformation retraction
to a knot in S3 (unique up to isotopy).

This means that a solid torus in S3 shrinks continuously into a knot. This result enables us to
define the knot associated with a torus embedded in R3.
Definition 5. Let T be a torus embedded in R3, S3 = R3 ∪ {p∞} the Alexandroff extension of
R3, and C1, C2 the connected components of S3 \ T . Assume that p∞ ∈ C1.

1. If C1 and C2 are solid tori (i.e. T is standard), then both admit a deformation retraction to
the trivial knot, and the knot associated with the embedded torus T is the trivial knot (see
Figure 10).

2. Otherwise, only one of the Ci is a solid torus, and the knot to which Ci retracts is called
knot associated with T (see Figure 10).

Thus, the recognition of a torus T embedded in R3 consists of two steps : firstly we have to
determine its state (standard, knotted torus or knotted anti-torus), and then we need to find and
recognize its associated knot. This last step involves knot theory, several algorithms are available
(for example, the Jones polynomial is easy to compute, see [Kau91]). Even if they unfortunately
can’t distinguish all knots, since they are based on knots invariants, they are efficient with common
knots. Our main concern is thus the first step and the very begining of the second step of knot
recognition : finding the state of an embedded torus and computing its associated knot.
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(a) The knot associated with a
standard torus in R3 is the trivial
knot.

(b) Knot associated with a
knotted torus.

(c) Knot associated with a
knotted anti-torus

Figure 10: Knots associated with tori embedded in R3.

4 Implementation
In this article, the choice was made to focus on theory. The two algorithms that we already have
implemented are prototypes intended to show the effectiveness of the theoretical study. Therefore,
they are briefly described, without getting down to the specifics (formal description, complexity,
memory occupation ...).

The first one aims at finding the state of a torus T embedded in R3. It is based on an algorithm
from [DPF08] which computes the three dimensional minimal generalized map homologous to a
3D object in order to find its homology group generators. We isolated a part of this algorithm
and adapted it to simplicial complexes. Given our definition of the state of an embedded torus,
determining it amounts to telling if the connected components of R3 \ T are, or not, solid tori.
This algorithm starts with a simplicial complex K whose boundary is T , and may ensure that
this complex is a solid torus by finding a disc which satisfies the conditions of Proposition 1.
For instance, applied to the simplicial complex of Figure 11 (a), it gives the disc shown in (b).
This proves that this simplicial complex is a solid torus. However, even if K is a solid torus, the
algorithm may not be able to find such a disc. Thus this algorithm enables us to find the state of
some embedded tori, but not of all of them.

(a) A simplicial complex which is
a solid torus

(b) The first algorithm applied to
the solid torus of (a) gives a disc

(c) The second algorithm
applied to the solid torus of
(a) returns a knot

Figure 11: The two algorithms applied to an example of solid torus.

The point of the second algorithm is twofold : to determine the state of an embedded torus
T and, at the same time, to compute its associated knot. It starts with a simplicial complex K
whose boundary is T , and rectracts, shrinks it as much as possible. We have proved that if the
result of the algorithm is a knot, then K is a solid torus, and this knot is the one associated with
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T . For example, when we apply it to the simplicial complex of Figure 11 (a), we obtain the knot
(c). This shows, once again, that the starting simplicial complex is a solid torus. We are now
trying to prove that if K is a solid torus, then the algorithm necessarily gives a knot. If this
were true, the algorithm would be able to recognize solid tori, thus to determine the state of any
embedded torus. In this case, it would allow us to determine both the state of embedded tori and
their associated knots.

5 Conclusion and outlook
Our algorithms can determine the state and the knot associated with some embedded tori. If we
manage to prove that applied to any solid torus, the second one always returns a knot, then we will
be able to find the state and the knot associated with each embedded torus. Using algorithms from
knot theory, we may then recognize this associated knot, and thus obtain a complete description
of the embedded torus. There currently does not exist algorithm able to determine all knots,
however existing ones are very efficient with common knots.

A future (difficult) task will be to generalize this study to embedded surfaces of genus greater
than one.
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